241 research outputs found

    Magnitude of urban heat islands largely explained by climate and population

    Get PDF
    Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global climate change. The intensity of UHIs varies with population size and mean annual precipitation, but a unifying explanation for this variation is lacking, and there are no geographically targeted guidelines for heat mitigation. Here we analyse summertime differences between urban and rural surface temperatures (ΔTs) worldwide and find a nonlinear increase in ΔTs with precipitation that is controlled by water or energy limitations on evapotranspiration and that modulates the scaling of ΔTs with city size. We introduce a coarse-grained model that links population, background climate, and UHI intensity, and show that urban–rural differences in evapotranspiration and convection efficiency are the main determinants of warming. The direct implication of these nonlinearities is that mitigation strategies aimed at increasing green cover and albedo are more efficient in dry regions, whereas the challenge of cooling tropical cities will require innovative solutions

    Tree effects on urban microclimate: diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects

    Get PDF
    Increasing urban tree cover is an often proposed mitigation strategy against urban heat as trees are expected to cool cities through evapotranspiration and shade provision. However, trees also modify wind flow and urban aerodynamic roughness, which can potentially limit heat dissipation. Existing studies show a varying cooling potential of urban trees in different climates and times of the day. These differences are so far not systematically explained as partitioning the individual tree effects is challenging and impossible through observations alone. Here, we conduct numerical experiments removing and adding radiation, evapotranspiration, and aerodynamic roughness effects caused by urban trees using a mechanistic urban ecohydrological model. Simulations are presented for four cities in different climates (Phoenix, Singapore, Melbourne, Zurich) considering the seasonal and diurnal cycles of air and surface temperatures. Results show that evapotranspiration of well-watered trees alone can decrease local 2 m air temperature at maximum by 3.1 – 5.8 °C in the four climates during summer. Further cooling is prevented by stomatal closure at peak temperatures as high vapour pressure deficits limit transpiration. While shading reduces surface temperatures, the interaction of a non-transpiring tree with radiation can increase 2 m air temperature by up to 1.6 – 2.1 °C in certain hours of the day at local scale, thus partially counteracting the evapotranspirative cooling effect. Furthermore, in the analysed scenarios, which do not account for tree wind blockage effects, trees lead to a decrease in urban roughness, which inhibits turbulent energy exchange and increases air temperature during daytime. At night, single tree effects are variable likely due to differences in atmospheric stability within the urban canyon. These results explain reported diurnal, seasonal and climatic differences in the cooling effects of urban trees, and can guide future field campaigns, planning strategies, and species selection aimed at improving local microclimate using urban greenery

    A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell

    Get PDF
    Cytosolic calcium machinery is one of the principal signaling mechanisms by which endothelial cells (ECs) respond to external stimuli during several biological processes, including vascular progression in both physiological and pathological conditions. Low concentrations of angiogenic factors (such as VEGF) activate in fact complex pathways involving, among others, second messengers arachidonic acid (AA) and nitric oxide (NO), which in turn control the activity of plasma membrane calcium channels. The subsequent increase in the intracellular level of the ion regulates fundamental biophysical properties of ECs (such as elasticity, intrinsic motility, and chemical strength), enhancing their migratory capacity. Previously, a number of continuous models have represented cytosolic calcium dynamics, while EC migration in angiogenesis has been separately approached with discrete, lattice-based techniques. These two components are here integrated and interfaced to provide a multiscale and hybrid Cellular Potts Model (CPM), where the phenomenology of a motile EC is realistically mediated by its calcium-dependent subcellular events. The model, based on a realistic 3-D cell morphology with a nuclear and a cytosolic region, is set with known biochemical and electrophysiological data. In particular, the resulting simulations are able to reproduce and describe the polarization process, typical of stimulated vascular cells, in various experimental conditions.Moreover, by analyzing the mutual interactions between multilevel biochemical and biomechanical aspects, our study investigates ways to inhibit cell migration: such strategies have in fact the potential to result in pharmacological interventions useful to disrupt malignant vascular progressio

    An Oscillatory Contractile Pole-Force Component Dominates the Traction Forces Exerted by Migrating Amoeboid Cells

    Get PDF
    We used principal component analysis to dissect the mechanics of chemotaxis of amoeboid cells into a reduced set of dominant components of cellular traction forces and shape changes. The dominant traction force component in wild-type cells accounted for ~40% of the mechanical work performed by these cells, and consisted of the cell attaching at front and back contracting the substrate towards its centroid (pole-force). The time evolution of this pole-force component was responsible for the periodic variations of cell length and strain energy that the cells underwent during migration. We identified four additional canonical components, reproducible from cell to cell, overall accounting for an additional ~20% of mechanical work, and associated with events such as lateral protrusion of pseudopodia. We analyzed mutant strains with contractility defects to quantify the role that non-muscle Myosin II (MyoII) plays in amoeboid motility. In MyoII essential light chain null cells the polar-force component remained dominant. On the other hand, MyoII heavy chain null cells exhibited a different dominant traction force component, with a marked increase in lateral contractile forces, suggesting that cortical contractility and/or enhanced lateral adhesions are important for motility in this cell line. By compressing the mechanics of chemotaxing cells into a reduced set of temporally-resolved degrees of freedom, the present study may contribute to refined models of cell migration that incorporate cell-substrate interactions

    Mercury concentrations in two “great waters”

    Full text link
    Although many sources of Hg to surface waters have been identified including atmospheric deposition, resuspension of contaminated sediments, and direct discharges, there are very few recent data on ambient concentrations in the large lakes. Thus, an investigation of Hg concentrations in Lake Champlain and Lake Michigan was completed in the summer of 1993. Three depths of water including the microlayer, 30 cm below the surface, and 1 m below the thermocline were collected for each sampling event using ultra-clean techniques. All samples were processed in the field for dissolved and particulate fractions in a portable plastic enclosure equipped with a HEPA filter, and then analyzed by dual amalgamation and cold vapor atomic fluorescence spectroscopy in a Class 100 clean room at the University of Michigan. In addition, samples were analyzed for other trace metals by ICP-MS. Results from the two field investigations include the following: (1) On average, Lake Michigan water samples had higher concentrations of Hg than Lake Champlain; (2) There was no consistent pattern of Hg concentrations in the water column; (3) There was variability in the concentrations of Hg from the same depths over consecutive sampling periods. This paper discusses these results, and examines the relationship between the patterns in mercury concentrations and other physical and chemical data collected during the investigation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43914/1/11270_2005_Article_BF01189709.pd

    On the Peripheries of Planetary Urbanization: Globalizing Manaus and its Expanding Impact

    Get PDF
    In this paper I argue that global urbanism produces peripherality in ways that cannot be adequately problematized without taking into account its actual extent and geographically uneven development. Therefore, planetary urbanization needs to engage scholarly traditions attuned to regional urbanization if the discourse is to move past limitations in the urban globalization canon and its narrow focus on cities. To that end, I examine research on extensive urbanization in the Amazon region. Illustrative case studies show how attempts to globalize Manaus precipitated territorial restructuring and sociospatial change far beyond the city's boundaries. Manaus is now a more unequal city. Selective metropolitan expansion to the Rio Negro's south bank has led to the simultaneous upgrading and peripheralization of Iranduba. Yet, the building of a city-centric regional network of roadways also shaped Roraima State's transformation from isolated borderland to bypassed periphery. Moreover, financial and symbolic appropriations of standing rainforests by metropolitan conservationism marginalize remote communities even in the absence of exploitative deforestation and resource extraction. Final remarks emphasize the need for further research on the hybrid (urban—rural) conditions and functional articulations of distant-yet-impacted peripheries. Such efforts may broaden the political horizons of planetary urbanization by informing extensive contestations of entrepreneurial urbanism
    corecore